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1. Introduction

Extra-dimensions provide a natural explanation of the hierarchy between the Planck and

the electroweak scale. In Randall-Sundrum (RS) scenarios [1] the hierarchy is explained

through an exponential warping of mass scales along an extra-dimension. Early versions

of these scenarios had all the Standard Model (SM) fields localized on the TeV brane [1].

Later the gauge fields migrated to the bulk [2] and were soon followed by the quarks

and leptons [3, 4]. This migration made it easier to understand how the scenario could

be compatible with unification and precision electroweak measurements even with TeV

scale Kaluza-Klein (KK) modes for these fields. However the Higgs remained mainly1 on

the brane, since this was the main motivation of the RS scenario: to explain how the

Higgs could naturally have a TeV scale mass. However from the perspective of the anti-de

Sitter/conformal field theory (AdS/CFT) correspondence, the localization of the Higgs on

the TeV brane corresponds to the assumption that the operator that breaks the electroweak

symmetry has an infinite scaling dimension. Furthermore from the AdS/CFT perspective

the technical naturalness of the Higgs mass only requires that the operator have a scaling

dimension greater than two so that the operator corresponding to the Higgs squared mass

term has a dimension greater than four and is thus irrelevant. Therefore it is interesting

to explore what happens in RS scenarios when the assumption of strict localization of the

Higgs field is relaxed.

Another generalization of RS scenarios was the suggestion [5] that with an extra di-

mension, some or all of the W and Z masses could come from the momentum along the

1See however refs. [6, 7].

– 1 –



J
H
E
P
0
2
(
2
0
0
7
)
0
3
6

extra dimension, that is from the fact that their wave functions are not exactly flat. By

increasing the Higgs VEV on the brane the lightest W and Z modes are forced to move

further from the brane, and their wave functions become less zero-mode like. In the limit

that the brane Higgs VEV goes to infinity the W and Z have no couplings to the Higgs and

all of their masses come from the derivative of their extra dimensional profiles. This is the

Higgsless limit [5]. One can then interpolate between the Higgsless model, the conventional

RS model and the SM by varying the Higgs VEV and the Higgs localization parameter,

and as a result also varying the size of the coupling of the Higgs to the gauge bosons.

Since the integral of the Higgs VEV contributes to the gauge boson masses we cannot take

the infinite VEV limit unless the Higgs is strictly localized on the brane. Thus these bulk

Higgs theories generically have a physical Higgs with suppressed gauge couplings. In con-

ventional RS scenarios the Higgs VEV is tuned to be much smaller than the typical scale

of the model (i.e. the scale of the KK modes). Again from the AdS/CFT perspective this

is not the natural expectation. Normally we would expect at most a factor of 4π between

the analogs of the pion decay constant and the rho mass.2 Of course, at the LHC we would

like to be prepared for the unexpected, so when considering RS scenarios we should keep

in mind that there is a two dimensional parameter space (Higgs localization and VEV) to

consider, and that the most “natural” locations in the parameter space are not those that

have been studied so far. Due to the repulsion of the wave functions of the bulk fields away

from the Higgs VEV we find that all Higgs couplings are generically suppressed relative to

the SM, and this has a variety of consequences for experimental searches.

In this paper we will attempt a first survey of this gaugephobic Higgs parameter space.

In section 2 we describe the class of models (with many of the details relegated to the three

appendices) and how they are consistent with current experiments, while in section 3 we

describe the phenomenology for upcoming experiments. To keep the discussion simple we

focus on two benchmark points: the first where the Higgs couplings are about half of the

SM values, and a second where the couplings are about a tenth of the SM values. The

Higgs is not only harder to find, but it can also be outside the range of masses allowed

in the SM: it can be lighter than the experimental bound from LEP or heavier than the

theoretical upper bound coming from unitarity. Fortunately there are a variety of other

particles that can be searched for but typically it will take much longer for the LHC to

sort out the true situation than in other more simplistic scenarios.

2. The model

In this section we examine the effect of a bulk Higgs in an RS set-up using the conformally

flat metric

ds2 =

(

R

z

)2
(

ηµνdxµdxν − dz2
)

, (2.1)

for R < z < R′. As usual the UV brane is located at z = R and the TeV brane is at z = R′.

Here we will simply adapt the Higgsless model of ref. [5, 9] by replacing the Dirichlet IR

2A natural way of keeping the Higgs VEV below the KK scale is via the pseudo-Goldstone mechanism.

A concrete realization of this idea in the RS context has been proposed in ref. [8].
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boundary conditions (BC’s) (corresponding to a very large Higgs VEV localized on the IR

brane) with a bulk Higgs VEV. Let us first summarize the main features of the model: the

gauge group is SU(2)L× SU(2)R× U(1)X , where for the first two generations the X charge

is equivalent to B −L. The gauge bosons for each group are denoted by Aa
L,R and B, with

5D gauge couplings g5 and g̃5 (for simplicity we will take the two SU(2)’s to have the same

gauge coupling). The Higgs field is a bidoublet of SU(2)L × SU(2)R:

H =

(

φ∗
0 φ+

−φ∗
+ φ0

)

H → ULHU †
R ; (2.2)

and its U(1)X charge is zero. The Lagrangian for the Higgs and the SU(2)L × SU(2)R ×
U(1)X gauge sector is:

L =

∫ R′

R
dz

R

z

{

− 1

4g2
5

F aMN
L F a

LMN − 1

4g2
5

F aMN
R F a

RMN − 1

4g̃2
5

BMNBMN

}

(2.3)

+

∫ R′

R
dz

(

R

z

)3 [

Tr |DMH|2 − µ2

z2
Tr |H|2

]

− VUV(H)δ(z − R) − VTeV(H)δ(z − R′) ,

where µ is a bulk mass for the Higgs (in units of the inverse curvature radius R−1). The

potentials VUV and VTeV on the branes determine the boundary conditions for the Higgs

and induce electroweak symmetry breaking (EWSB). In particular the potential on the

TeV brane which breaks the electroweak symmetry has the usual form:

VTeV =

(

R

R′

)4 λR2

2

(

Tr |H|2 − v2
TeV

2

)2

. (2.4)

The bulk equations of motion allow two solutions for the profile of the bulk Higgs

VEV (see appendix A). We choose a UV boundary condition that ensures that the allowed

solution is localized close to the TeV brane (i.e. electroweak symmetry is broken at the

TeV scale). The solution for the bulk profile can be written as:

v(z) =

√

2(1 + β) log R′/R

(1 − (R/R′)2+2β)

gV

g5

R′

R

( z

R′

)2+β
, (2.5)

where g is the SM SU(2) gauge coupling, and

β =
√

4 + µ2 (2.6)

is the parameter determining how close to the TeV brane the Higgs VEV is localized. In

the presence of this VEV the gauge boson masses have two sources: the curvature of their

wave functions (also induced by the VEV) and the direct overlap with the VEV. Instead

of using vTeV of eq. (2.4), we choose to normalize the VEV through the input parameter

V (appearing in eq. (2.5), which carries the usual dimension of mass). The factors of β,

R and R′ in front are chosen in such a way that in the limit V = vSM ∼ 246 GeV the

direct contribution of the VEV to the gauge bosons mass saturates the SM value, and the

volume of the extra dimension shrinks to zero. In other words one recovers the SM in 4

dimensions, independently of the localization of the VEV.

– 3 –
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Figure 1: Lines with fixed values (400 Gev, 300GeV, and 200GeV) of the inverse size of the

extra-dimension R′ in the (V, β) plane (continuous lines), lines of fixed contribution of the Higgs to

WW scattering compared to the SM (dashed lines), and lines of fixed cut-off of the theory due to

the top sector becoming non-perturbative (thick gray lines).

The theory also contains a bulk physical Higgs boson. The mass of the (possibly) light

mode is a free parameter and determined by the quartic coupling λ of the TeV potential

VTeV. Similarly to the SM the mass of the physical Higgs is given by

m2
h ∝ λ V 2 . (2.7)

It is clear that increasing V the Higgs can be decoupled safely from the theory without

entering a strongly coupled regime in the Higgs sector, as happens in the SM.

The model has 6 free parameters in the gauge-Higgs sector: R, R′, the gauge couplings

g5 and g̃5, the VEV parameters β and V . Three of the parameters (R′, g5 and g̃5) can be

determined by fixing the values of the W and Z mass, and the coupling of the photon to

the fermions. If we also fix 1/R = 108 GeV,3 we are left with the two parameters (V, β). In

figure 1 we plot contours of the IR scale 1/R′ as a function of V and β. It is interesting to

notice various limits. First, when the VEV V is equal to the SM value vSM ∼ 246 GeV, the

IR scale becomes large. In fact, in this case, the contribution of the Higgs VEV to the W

mass saturates the physical value of it, and thus the contribution of the extra dimension

has to vanish. As a consequence, in this limit (with fixed W mass), the volume of the extra

dimensions has to go to zero and the KK modes decouple: R′ → R . In other words, when

V → vSM we recover the 4D SM.

Another interesting limit is β → ∞. This is a conventional RS1 scenario [11]. If one

also takes the limit V À 1/R′ (i.e. top-right corner of the plot), one recovers the Higgsless

limit where the Higgs decouples from the theory and can be made arbitrarily heavy: the

unitarization of the longitudinal W scattering is then guaranteed by the contribution of the

gauge boson resonances [12, 13]. In the bulk of the parameter space, however, we find an

3Different values of R will not qualitatively affect our results. The main effect of R is to enter in the

relation between MW and R′: for instance, a smaller R will require a larger scale on the TeV brane 1/R′ [10].

– 4 –



J
H
E
P
0
2
(
2
0
0
7
)
0
3
6

intermediate situation where both the Higgs and the gauge bosons KK modes contribute.

In the SM, the Higgs is forced to be lighter than about 1 TeV in order to play a role in the

unitarization (unitarity bound). As a consequence, the SM Higgs cannot escape detection

at the LHC. In the Higgsless limit, the Higgs cannot be detected in any experiment. In

the intermediate regime, the role of the Higgs in the unitarization can be less important

than in the SM, and the usual Higgs mass bound can be evaded. In cases where the Higgs

is out of reach of the LHC, the world will appear to be Higgsless from the experimental

point of view for several decades. It is important then to understand the unitarity bound

in this model. The Higgs enters in the longitudinal W scattering amplitude term which

grows like the energy squared. The coefficient of this term is proportional to

A(2) ∼ g2
WWWW − 3

4

∑

k

M2
Zk

M2
W

g2
WWZk − 1

4

∑

k

g2
WWHk , (2.8)

where the sums cover all the KK modes. In the SM, only the first Z and Higgs mode

are present and both sums consist of only one term. The presence of the gauge boson

KK modes increases the second term, allowing the third one (the Higgs contribution) to

be smaller. We can thus define the following parameter to quantify how “Higgsless” the

model is:

ξ ≡
∑

k g2
WWHk

g2
WWH(SM)

. (2.9)

In the SM limit ξ → 1, while in the Higgsless limit ξ → 0. Since 5D gauge invariance

guarantees the vanishing of (2.8) this implies that the contribution of the lightest Higgs

will not be important until scales of order ΛSM/
√

ξ where ΛSM is the unitarity violation

scale in the SM without a Higgs. This implies that the Higgs mass can be raised to values

approaching this number. In other words, the unitarity bound on the Higgs mass can be

relaxed by about a factor ∼
√

1/ξ: if the Higgs only contributes 10% with respect to the

SM, it can be as heavy as about 3 TeV; the bound is raised up to about 10 TeV if the

contribution is only 1% (ξ = 0.01). We have plotted various contours for ξ in figure 1

(dashed lines).

It is well known that in Higgsless models particular care is needed to maintain com-

patibility with electroweak precision tests (EWPT) while simultaneously getting a large

enough top quark mass. Concerning EWPT, the main problem turns out to be large tree-

level corrections to the S parameter. In order to make them small, one has to allow the

light fermions to be spread in the bulk [10]. When their profile is approximately flat, their

wave function is orthogonal to the KK gauge bosons, and the contributions to the S pa-

rameter can be made arbitrarily small. The top mass problem has been successfully solved

in ref. [9]. One has to use an alternative bulk-gauge/custodial representations for the third

generation [14]. Instead of having the left-handed (LH) top and bottom transforming as

a (2,1) under SU(2)L × SU(2)R and the right-handed (RH) fields as a (1,2), one has to

embed the LH top and bottom in a bidoublet (2,2), the RH top in a singlet (1,1) and

the RH bottom in a triplet (1,3). Localizing the LH bidoublet and the RH top close to

the TeV brane, while the RH bottom close to the Planck brane allows for produce a large

enough top mass without generating large deviations to the Zb`b̄` coupling. More details

– 5 –
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are discussed in appendix C. Another important ingredient to estabilish the exact bounds

on the parameter space is the loop contributions to EWPTs, in particular the T parameter

that, thanks to the bulk custodial symmetry, is calculable and UV insensitive. It receives

sizable contributions especially from the third generation, and it was calculated in [15] in

a particular model with the new representations. In the context of a bulk Higgs model

exactly the same methods can be used to solve the two problems discussed above. Of

course as 1/R′ is increase to be larger than in the Higgsless limit, the bounds become less

severe and thus a larger region of parameter space is allowed.

Another potential issue is if the theory is perturbative in every sector up to at least

∼ 5 − 10 TeV, so that higher order corrections will not spoil EWPTs. We have to be

concerned by the gauge, top and Higgs sector. Using the techniques of Naive Dimensional

Analysis (NDA), properly adapted to 5D, one can estimate the scale at which each sector

becomes strongly coupled. The Higgs sector, as long the lightest Higgs boson mode is

lighter than about 1TeV, becomes strongly coupled at a very high scale. However, the

gauge and the top sector may still pose a potential problem. The strong scale of the weak

gauge coupling was estimated in [10]: it crucially depends on the IR scale R′. Even taking

into account factors as big as 4 [16], we see that the strong scale is safely above 10 TeV

for 1/R′ > 300 GeV (a less conservative bound of 5 TeV on the strong scale would imply

1/R′ > 160 GeV, however this region is already unrealistic due to gauge boson resonances

being too light). In the top sector, we can estimate the strong scale corresponding to the

bulk top Yukawa, y5, using NDA (properly warped down):

Λtop ∼ 24π3

y2
5

R

R′
, (2.10)

where we are neglecting unknown factors of order 1. The situation, however, is more tricky,

since the precise value of y5 crucially depends on the localization of the left and right-handed

tops. In figure 1 we show two thick gray lines corresponding to the top Yukawa becoming

strong at 10 and 20 TeV, for cL = cR = 0 (this is in the range of parameters we use to

produce a heavy top mass and small corrections to the Zb`b̄` coupling). It is interesting

to notice that the more Higgsless the theory is, the lower the strong scale is. This is a

consequence of a lower IR scale, and a smaller overlap with the top quark when we localize

the Higgs on the brane. However, in the strict Higgsless limit V → ∞ this scale becomes

large again, due to the fact that in this limit the Yukawa coupling goes to zero. In this

limit, the cut-off of the theory is set by the scale at which the gauge sector becomes strong.

We stress again that the value of this scale strongly depends on the localization of the

top quark. In the following we will be conservative, and consider only points where the

non-perturbative scale is above 20 TeV.

3. Phenomenology

As in many other models with extra dimensions, bulk Higgs models predict the existence of

KK states for all the SM fields. However, the most distinctive feature is the presence of a

Higgs boson with an unconventional phenomenology. In the region where V ' 246 GeV the

– 6 –
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Figure 2: Suppression of the couplings of various SM fields with the Higgs with respect to the SM

values for β = 2, as a function of V .

model approaches the SM, and the Higgs phenomenology is conventional. In the “Higgsless”

limit (V À 1/R′, β À 1) the Higgs decouples from the theory: even if we want to make it

light, through a tiny quartic coupling (2.7), its couplings to other fields go to zero, and thus

we will never be able to produce and observe it. It is interesting to study some intermediate

points, where the couplings of the Higgs to the SM fields, although suppressed, are large

enough to lead to a potential discovery at the LHC. In figure 1 we plotted the suppression

of the coupling of the Higgs to gauge bosons. In figure 2 we show the suppression of the

couplings with different SM fields as a function of V (for fixed β = 2). The first thing

to notice is that the Higgs couplings are more suppressed to heavier particles. This can

be understood in the following way. The heavier the particle, the more it couples to the

VEV: this also implies that the wave functions are more distorted away from zero-modes

(they are more repelled from the peak of the VEV). Schematically, the masses receive one

contribution from the direct overlap with the VEV, and the other from terms involving

the derivative along the extra dimension (this contribution is still induced by the VEV, as

the light states would be zero modes for vanishing VEV). Thus, a larger part of their mass

comes from the extra dimension compared to lighter particles. However, the (light) Higgs

wave function is essentially identical to the VEV profile, so that the coupling is proportional

to the portion of the mass coming directly from the VEV. As we already discussed, this

portion is larger for light fermions compared to heavy ones. We can therefore see that

the couplings of the Higgs to heavy particles, like the top or weak gauge bosons, are more

suppressed than to light fermions, like the bottom. This can affect the decay modes in

an important way. Another interesting point is that the production of the Higgs (which

mostly happens via the couplings to the W , Z and t) is approximatively suppressed by the

“Higgslessness” of the model: the parameter ξ, plotted in figure 1. In other words, in a

point where ξ = 0.01, the production rate of the Higgs is about 1% of the SM one.

To be more concrete, we choose two benchmark points: a) V = 300 GeV and β = 2,

– 7 –
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a) V = 300 GeV, β = 2

gttH/SM 0.52

gWWH/SM 0.54

gZZH/SM 0.54

gbbH/SM 0.75

gffH/SM 0.81

b) V = 500 GeV, β = 2

gttH/SM 0.08

gWWH/SM 0.15

gZZH/SM 0.15

gbbH/SM 0.38

gffH/SM 0.49

Table 1: Higgs couplings to the SM fields for the two benchmark points a) V = 300GeV and

β = 2, b) V = 500GeV and β = 2. “f” stands for the light fermions
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Figure 3: Cross sections times branching ratios for various Higgs production and decay channels

for the SM (solid lines) and gaugephobic Higgs (dashed lines) for β = 2 with V = 300 (top) and

V = 500 (bottom).

b) V = 500 GeV and β = 2. We report in table 1 the couplings of the Higgs to various

SM fields, compared to the SM, in the two cases, assuming a Higgs mass of 120 GeV (these

numbers have a mild dependence on the Higgs mass below 1 TeV).

First of all, the suppressed HZZ coupling relaxes the LEP bound mH > 114 GeV [17].

It turns out that for point a) the production cross section is suppressed by a factor around

4, and thus the bound becomes mH & 95 GeV [17]. For point b) the production rate

is suppressed by a factor of about 100, so there is no limit from LEP. At the LHC, the

suppressed couplings to the top and the weak gauge bosons lead to a reduced production

cross section. Both gluon fusion and weak boson fusion production channels receive a

suppression of about a factor 4 in point a) and 100 in point b). Concerning the decay

modes, branching fractions to light particles are enhanced with respect to the SM.

We show in figure 3 the production cross section times the branching fraction as a

– 8 –
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a) V = 300 GeV, β = 2

1/R′ 372.5 GeV

W ′ 918 GeV

Z ′
1 912 GeV

Z ′
2 945 GeV

G′ 945 GeV

b) V = 500 GeV, β = 2

1/R′ 244 GeV

W ′ 602 GeV

Z ′
1 598 GeV

Z ′
2 617 GeV

G′ 617 GeV

Table 2: Spectrum of the first gauge boson KK states for the two benchmark points a) V = 300

GeV and β = 2, b) V = 500GeV and β = 2.

function of the Higgs mass for a single Higgs decaying to WW (∗), ZZ(∗), γγ and associated

production tt̄H → tt̄bb̄, WH → WWW (∗). These are the most promising channels for the

discovery at the LHC in various mass ranges. Continuous lines represent the SM, while

dashed lines represent the gaugephobic Higgs model. It is important to notice the Higgs

into two photons decay channel. It is mediated by a loop of tops and W ’s, which turn out

to have the strongest suppression. For low Higgs masses (when the ZZ∗ channel is still

indistinguishable from Zγ∗ background) in the SM there are two possible discovery chan-

nels: H → γγ and associated production tt̄H → tt̄bb̄, with a similar discovery significance.

Since the coupling of the Higgs to t and W is more suppressed than to the b, the H → γγ

channel is no longer useful. All other channels get rescaled approximately by a factor 4 in

point a) and 100 in point b). Since the discovery significance scales with the square root of

the integrated luminosity, it means that at the LHC it will be necessary to collect 16 and

104 times the luminosity necessary in the SM case to claim a discovery with the same sta-

tistical significance. Let us discuss a concrete example. In the SM, discovering a 100 GeV

Higgs in the tt̄H → tt̄bb̄ channel at a ∼ 8σ significance requires an integrated luminosity

of about 100 fb−1 [18]. In this model, in case a), and with the same integrated luminosity,

since the production rate decreases by a factor of 4 the significance would only be ∼ 2σ.

A 5σ discovery would require an integrated luminosity of 100 · (5/2)2 ∼ 600 fb−1, which

almost saturates the total integrated luminosity (700 fb−1) that the LHC is expected to

collect. The discovery might still be claimed, but the signal would be delayed by years and

become statistically significant only at the very end of the LHC run. Point b) is much more

problematic: the suppression factors are around 100, making the discovery of the Higgs at

the LHC impossible. Here we only considered Higgs produced via channels already present

in the SM. However, the Higgs may also be radiated by a heavy gauge boson or be in its

decay products. This channel is potentially interesting due to the large overlap of the Higgs

profile with the KK gauge bosons, that might give rise to a large production rate.

As we discussed, there are regions in the parameter space where the LHC can discover

the Higgs (even though requiring much more time than the SM Higgs), and regions where

the Higgs is definitely out of reach for the LHC. It is therefore interesting, and comple-

mentary, to look for other new particles in the gauge sector: the gauge boson KK modes.

As in the Higgsless model, they play a fundamental role in the gauge sector, restoring

the perturbative unitarity in the longitudinal W and Z scattering. As a consequence, the

“more Higgsless” the models is, the lighter those resonances are. In table 2, we show the

– 9 –
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spectrum of the lightest modes for the two benchmark points. Those states also have a very

specific pattern of couplings dictated by the set up of the model. They have a large (order

1) coupling to the top and bottom, that are localized near the TeV brane as well as the

KK gauge bosons. On the other hand, the coupling with the light fermions is suppressed

due to their almost flat wave function: this is required by EWPTs. Finally, the couplings

to W ’s and Z’s are also small and constrained by the saturation of the sum rules in the

logitudinal gauge boson scattering amplitude. As a consequence, the main decay channels

are tops-bottoms and gauge bosons (W and Z). The decay into gauge bosons is large

notwithstanding the small coupling due to the kinematics of the process. Regarding the

production channels, due to the hierarchy in the couplings, they will have a large cross sec-

tion in association with third generation quarks. The study of vector resonances coupling

negligibly to the light fermions but sizeably to the third generation of quarks has been

performed in [19]. They show that, with an integrated luminosity of 300 fb−1, a vector

resonance can be discovered at 5σ significance up to about 2 TeV. The most promising

channels are gg → bb̄, tt̄, with a Z ′ radiated by one of the heavy quarks. The Z ′ would

then decay mainly to top pairs, giving as a final state either bb̄tt̄ or tt̄tt̄. The choice of

the couplings of the Z ′ to the third generation made in [19] is different from our case:

they consider a Z ′ coupling only to right-handed top and bottom quarks. However the

right handed couplings of the top and the bottom used in [19] approximately match the

sum of left and right handed couplings of the third generation fermions in this model, so

we expect their result to be approximately applicable to our model as well. The channel

that is less sensitive to the details of the model is vector boson fusion, because it involves

a coupling constrained by the EW symmetry breaking mechanism. This channel is also

interesting because it can be idetified thanks to cuts on the two forward jets in the fi-

nal state. A preliminary study has been performed in [20]: they showed that the signal

from the W ′ should be observable for masses below ∼ 1 TeV, assuming however a 100%

branching ratio to gauge bosons. Their result should therefore be rescaled by the actual

branching fraction. Finally, they can be resonantly produced in a Drell-Yan process: the

coupling to light quarks is suppressed but not vanishing, and the enhancement of the two

body phase space with respect to the three body one can make such channel competitive or

even dominant. Note also that the rare leptonic decay of the Z ′ may also be an interesting

and clean channel to confirm the discovery. To conclude, we can confidently affirm that

the discovery of the Z ′ and/or W ′ should not be missed at LHC in both our benchmark

points. However, a more detailed study of the signatures and production cross sections is

necessary to better characterize those models, and we postpone it to a future publication.

In the fermion sector, an interesting feature of this model is the structure of the

resonances of the third generation quarks. This structure may be used to probe the new

representations that minimize the deviations in the Zb`b̄` coupling. In table 3 we list the

first fermionic resonances (below about 1TeV) for the two benchmark points, and for a

particular choice of the bulk masses (cL = ct
R = 0 and cb

R = −0.79) that is compatible with

current data. There are many particles that are light enough to be produced at LHC. The

Yukawa interactions mix all the representations, however their effect is numerically small

(order 10% in the masses) so that each particle is an approximate interaction eigenstate
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charge a) V = 300 GeV b) V = 500 GeV

5/3 581 GeV 382 GeV XL

2/3 643 GeV 511 GeV TL

-1/3 1062 GeV 712 GeV bR

2/3 1058 GeV 693 GeV TR

5/3 1124 GeV 832 GeV XR

2/3 1160 GeV 831 GeV tL − tR
-1/3 1242 GeV 917 GeV bL

2/3 1318 GeV 1114 GeV tL − tR

Table 3: Spectrum of the first resonances in the third generation quark sector, for the two bench-

mark points. Near the mass eigenvalues, we report the field where such eigenstate mostly live. The

effect of the Yukawa couplings is indeed to mix the representations, but numerically it corresponds

a small shift of the masses.

(this is more true for small V ): this allows to try to reconstruct the non-trivial bulk gauge

representations. For instance, for the benchmark point a), we can easily identify a doublet

(X, T ) with charges +5/3 and +2/3 respectively at ∼ 600 GeV as the lightest particles.

At ∼ 1050 GeV we have a triplet of states that correspond to the triplet containing bR,

and around ∼ 1200 GeV we have a doublet (tL, bL) and a singlet tR. The discovery of a

fermion with charge 5/3 alone would be a strong indication that a bidoublet exists, but

from the spectra in the table we can see that a more detailed structure can actually be

observed notwithstanding the mixings induced by the Yukawa couplings. The LHC should

be able to distinguish the light doublet, and maybe more details of the spectrum depending

on the precision in the mass determination. The heavy top will be pair produced in gluon

fusion, or singly produced in Wb or Zt fusion (gq → T b̄q′ and gq → T t̄q). The techniques

for the search of heavy partners of the top have been analyzed in the context of Little

Higgs models. If the mass is below 1 TeV, as in our case, its discovery at the LHC cannot

be missed [22]. The exotic quark X with charge 5/3 is more interesting, as it is a direct

consequence of the new realization of the custodial symmetry. Similarly to T , it can either

be pair produced through gluon fusion or singly produced in the process gq → Xt̄q′. The

X would then decay to a tW+ pair. The first mechanism would give 4 W ′s and 2 b-jets,

while the second one 3 W ′s and 2 b-jets: for both processes the SM background would be

very small, and thus we expect that the discovery at the LHC should be guaranteed. Due

to its charge, in the decay chain there will be two same-sign W ’s, X → W+t → W+W+b:

in the leptonic channel they will lead to same-sign lepton pair events. Note that the X

particle is also present in some Little Higgs models [21].

Another consequence of the new realization of the custodial symmetry in the bulk, is

a suppression in the Wtlbl coupling, that can be parameterized in terms of a suppression

of an effective CKM element Vtb.
4 If the assumption of the unitarity of the CKM matrix

is relaxed, such suppression is not ruled out by present experiments [23]. The only way to

4In the language of KK states, this reduced coupling is indeed the effect of the mixing of the top with

heavy KK fermions via the Yukawa couplings.
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directly probe this coupling is to measure single top production at the Tevatron and/or the

LHC. In the two benchmark points, we find that the effective Vtb is 0.88 for V = 300 GeV

and 0.74 for V = 500 GeV (to be compared with the SM value Vtb ∼ 1). At the Tevatron,

this implies a suppression of 23% in the benchmark point a) and 45% in point b) in

the t-channel production cross section (and associated Wt production). In the s-channel,

where the top is produced in association with a bottom quark via a virtual W , we should

also take into account the interference with the W ′s: this might induce an even larger

suppression [24]. At the LHC, the measurement of single top production in the t-channel

will allow a direct measurement of Vtb at a 5% level [23], therefore testing directly this

prediction of the model. The s-channel is more challenging to measure: due to the presence

of 2 b-jets in the final state (one is from the top decay) it suffers from a large background

from tt̄ production.

Finally, the spectrum of KK excitations also contains massive gluons (the masses are

listed in table 2). It is not a very specific signature of this model, as it does not play any

role in EWSB and it is only a consequence of putting the SU(3)C gauge group in the bulk.

Its coupling to the third generation is enhanced for the same reason why the Z ′ coupling

is: a significant overlap near the TeV brane. Thus it can be radiated away from a heavy

quark. The signature is very similar to the Z ′ analyzed in [19] but with bigger couplings:

now they are SU(3)C couplings rather than SU(2). Thus the LHC is sensitive to even

higher masses. In this case the discovery of the KK gluon G′ at the LHC cannot be missed.

4. Conclusions

We have begun an exploration of the space of generalized RS scenarios where the Higgs

localization width and VEV are taken as free parameters. Generically the Higgs is gauge-

phobic and topphobic. Such a gaugephobic Higgs can be lighter than the SM experimental

bound or heavier than the SM theoretical bound. A gaugephobic Higgs will be more difficult

(or impossible) to find at the LHC. However other particles (e.g. gauge boson resonances)

are lighter than in conventional RS scenarios and thus will be easier to find. The Z ′ is a

good example of a resonance that should be easy to look for. There are also top quark

resonances and a tower of exotically charged fermions that is necessary for the implemen-

tation of the new realization of custodial symmetry. Since the top quark couplings are also

reduced in gaugephobic Higgs scenarios, it is possible that the first experimental signature

that can be found will be the suppression of single top production at the Tevatron.
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A. The Higgs sector

The equations of motion for the Higgs field (with 4D momentum pν) and the BC’s that

arise from the variation of the action corresponding to eq. 2.3 are:

(

z3∂z
1

z3
∂z + p2 − µ2

z2

)

H = 0 , (A.1)

(

R

R′

)3

∂zH +
∂

∂H∗
VTeV

∣

∣

∣

∣

∣

R′

= 0 , (A.2)

∂zH− ∂

∂H∗
VUV

∣

∣

∣

∣

R

= 0 . (A.3)

We will assume that the quartic term is localized on the IR brane, as we want EWSB to

take place there.

In order to find the VEV we need to solve the equations of motion and find a solution

that minimizes the full potential, as encoded in the BC’s. For pν = 0 and a diagonal VEV

which breaks SU(2)L× SU(2)R → SU(2)D:

< H >=

(

1 0

0 1

)

v(z)√
2

. (A.4)

the solutions are of the form

v(z) = a
( z

R

)2+β
+ b

( z

R

)2−β
, (A.5)

where β =
√

4 + µ2. Note that the dimension of the corresponding CFT operator is 2± β

depending on the UV boundary conditions. We can see that the effect of β, i.e. of the bulk

mass, is to control the localization of the profile of the VEV in the bulk. The bulk mass

squared can be negative but it is bounded [25] by µ2 > −4. The form of the localized

potentials VTeV, VUV determines if a VEV is generated and its size. We want a VEV

generated on the TeV brane, so we will add a “mexican hat” potential there. On the UV

brane, on the other hand, we just add a mass term:

VUV = mUV Tr |H|2 , (A.6)

where mUV has dimension of mass. Eq. A.3 can be used to fix the ratio between the two

coefficients in the solution (A.5):

b

a
= −2 + β − mUVR

2 − β − mUVR
. (A.7)

The relation between the mass mUV and the bulk mass can select one of the two solutions:

mUVR = 2 ± β will select the solution growing towards the TeV or the UV brane respec-

tively. In the CFT language, this boundary condition corresponds to the determining the

CFT operator (and its scaling dimension) represented by the bulk Higgs. In the following
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we will assume that only the solution with the IR localized profile (corresponding to the

operator with the higher dimension) is selected by the UV mass so that:

mUV =
2 + β

R
(A.8)

v(z) = a
( z

R

)2+β
. (A.9)

Note that the dimension of the corresponding CFT operator which breaks electroweak

symmetry is 2 + β: being β ≥ 0, in this case the Higgs mass is naturally of order TeV

(1/R′). Tuning the UV mass as in eq. A.8 is not essential: the solution we select is in fact

growing faster towards the TeV brane, so it will have a larger effect on the W and Z mass.

We will keep only one solution just to simplify our calculation. Note also that if we wanted

to select the other solution (z2−β), all we would have to do is to flip the sign of β in all the

equations: in other words, taking β < 0 formally corresponds to the other solution. This

will only be interesting for one reason: for β = −1 (v ∼ z) we have a flat profile for the

Higgs VEV.

On the TeV brane, we add the following potential:

VTeV =

(

R

R′

)4 λR2

2

(

Tr |H|2 − v2
TeV

2

)2

, (A.10)

where the warp factors have been added so that all the parameters have a natural scale

set by R. Note also that a factor of R2 has been added to make λ dimensionless, while

vTeV has dimension [mass]3/2. Imposing the BC in eq. (A.2), the coefficient a in eq. (A.9)

is fixed. We can thus write the profile of the VEV as

v(z) =
1

R3/2

(

R3v2
TeV − 2(2 + β)

λ

)1/2 ( z

R′

)2+β
. (A.11)

The VEV v(z) is real, so there is a solution only if vTeV is large enough: a TeV brane

localized negative squared mass has to be big enough to overcome the effect of the positive

bulk mass. We can define a 4D VEV as the integral of the 5D VEV along the extra-

dimension:

v2
4 =

∫ R′

R
dz

(

R

z

)3

v2(z). (A.12)

In the limit where the VEV is localized on the IR branes, v4 is the value of the 4D VEV.

Thus the 5D VEV can be rewritten as:

v(z) =

√

2(1 + β)

R3(1 − (R/R′)2+2β)
v4R

′
( z

R′

)2+β
. (A.13)

Notice that the natural size of v4 is ∼ 1/R′.

At this point we can parameterize the bulk Higgs through three free parameters: the

bulk mass β, the 4D VEV v4 and the quartic coupling λ. The first controls the localization

of the profile, the second sets the size of the Higgs VEV, while the third controls the mass

of the lightest physical Higgs mode (which we will come back to later).
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The only parameter that carries a dimension of mass is v4. In order to make its value

more physically meaningful, we can rescale it, and reparameterize the Higgs VEV v as:

v(z) =

√

2(1 + β) log R′/R

(1 − (R/R′)2+2β)

gV

g5

R′

R

( z

R′

)2+β
, (A.14)

where g is the SM SU(2) gauge coupling, and V is the new input parameter we are defining.

The reason for this choice is that in the flat VEV case (β → −1) the contribution of the

VEV in the equation of motion for the gauge bosons (B.7) is

R2

z2

g2
5

4
v2(z) −−−−→

β→−1

g2V 2

4
; (A.15)

Since for β → −1 the W wave function is flat, the W mass comes entirely from the Higgs

VEV. Thus in this limit V has to be equal to the SM VEV vSM ∼ 246 GeV. We numerically

checked that we obtain the SM when V → vSM independently of the localization of the

VEV.

The bulk Lagrangian for the physical Higgs h is:

Lh =

∫ R′

R
dz

(

R

z

)3 {

1

2
(∂µh)2 − 1

2
(∂zh + ∂zv)2 − 1

2

µ2

z2
(h + v)2

}

. (A.16)

The tadpoles in h cancel out due to the equations of motion of the Higgs VEV v(z). On the

other hand, the localized potentials do generate a mass term for the Higgs. The equations

of motion for a mode with pνp
ν = m2 are:

(

z3∂z
1

z3
∂z + m2 − µ2

z2

)

h = 0 ,

∂zh − mUV h|R = 0 , (A.17)

∂zh + (R/R′) mTeV h
∣

∣

R′
= 0 .

The mass on the UV brane is given by eq. (A.8). The solution of the bulk equation of

motion and the UV brane boundary condition is given by

hm(z) = Az2 (Y1+β(mR)Jβ(mz) + J1+β(mR)Yβ(mz)) , (A.18)

where A is a normalization factor. The mass eigenvalues m are determined by the TeV

localized potential. On the TeV brane, the effective mass term is related to the Higgs VEV

and the quartic coupling λ:

mTeVR = λR3v2(R′) − (2 + β) . (A.19)

The value of this parameter determines the Higgs spectrum. As in the SM, the Higgs mass

is a free parameter, determined by λ. However, λ will also determine the Higgs quartic

coupling, so we need to make sure it is not too large in order to avoid strong coupling in

the Higgs sector.

– 15 –



J
H
E
P
0
2
(
2
0
0
7
)
0
3
6

B. Gauge sector

We now analyze the gauge sector of this model. Expanding the bulk scalar around the

VEV we have:

H =
1√
2

(v(z) + h)

(

1 0

0 1

)

eiπaσa

. (B.1)

The πas are the Goldstone bosons eaten by the broken gauge directions, associated

with the combination of fields Aa
L − Aa

R. We will focus on those gauge fields and Gold-

stones: to keep the formulae simple and clear, we will use the notation of a simple group

completely broken by the VEV, and a generalization to our model will be straightforward.

The Lagrangian up to quartic terms becomes:

Lgauge =

∫ R′

R
dz

R

z

1

g2
5

{

−1

4
F 2

µν +
1

2
(∂zAµ)2 +

1

2

(

R

z

)2

g2
5v

2A2
µ+

+
1

2
(∂µA5)

2 +
1

2

(

R

z

)2

g2
5v

2 (∂µπ)2 − 1

2

(

R

z

)2

g2
5v

2 (∂zπ + A5)
2 +

−
(

z∂z
A5

z
+

(

R

z

)2

g2
5v

2π − A5δ(z − R) + A5δ(z − R′)

)

∂µAµ

}

, (B.2)

where g5 is the 5D gauge coupling of the SU(2)’s. Note that the Higgs VEV always appears

in the following combination:

ṽ(z) =
R

z
g5v(z) =

√

2(1 + β)

(1 − (R/R′)2+2β)

g5√
R

v4

( z

R′

)1+β
. (B.3)

This quantity carries more physical meaning, as it is equivalent to a bulk mass for the

gauge bosons. In general the gauge boson masses have two sources: the curvature of their

wave function and the Higgs VEV. Notice also that if β = −1 the VEV is flat, the gauge

boson wave function is also flat, and the mass term becomes constant:

ṽ(z) → g5
√

R log R′/R
v4 = g4v4 . (B.4)

In this case the only source for the gauge boson mass is the Higgs VEV.

The mixing terms on the third line of eq. B.2 can be cancelled out by Rξ gauge fixing

terms in the bulk and on the branes:

LGF =

∫ R′

R
dz − R

z

1

g2
5

{

1

2ξ

(

∂µAµ − ξ

(

z∂z
A5

z
+ ṽ2π

))2

+

+
1

2ξUV
(∂µAµ − ξUVA5)

2 δ(z − R) +
1

2ξTeV
(∂µAµ + ξTeVA5)

2 δ(z − R′)

}

. (B.5)

The unitary gauge is, as usual, given in the limit where all the three ξ-parameters are sent

to infinity. A combination of the π’s and A5’s is eaten by massive gauge bosons, while

another one gives rise to a tower of physical states. However, those scalars are as heavy as
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the KK states, and the do not play any interesting role in the symmetry breaking. In the

unitary gauge, the vector bosons obey the following equation of motion:
(

z∂z
1

z
∂ + m2 − ṽ2(z)

)

Aµ(z) = 0. (B.6)

Ii is now straightforward to write the equations of motion for the gauge fields in our

specific model:
(

z∂z
1

z
∂ + m2 − g2

5

4

R2

z2
v2

)

(Aa
Lµ − Aa

Rµ) = 0 , (B.7)

(

z∂z
1

z
∂ + m2

)

(Aa
Lµ + Aa

Rµ) = 0 , (B.8)

(

z∂z
1

z
∂ + m2

)

Bµ = 0 . (B.9)

As in the Higgsless model, the BC’s on the UV brane break SU(2)R×U(1)X →U(1)Y :

∂5A
a
Lµ = 0 , A±

Rµ = 0 ,

∂5

(

1
g̃2

5

Bµ + 1
g2

5

A3
Rµ

)

= 0 , A3
Rµ − Bµ = 0 .

(B.10)

On the TeV brane all the gauge fields have Neumann BC’s since EWSB is accomplished

by the Higgs VEV.

C. The fermion sector

The conventional choice for embedding fermions into SU(2)L × SU(2)R models is to put

the LH and RH SM fermions into SU(2)L and SU(2)R bulk doublets respectively. This is

what we will be using for the light fermions. For instance, ΨL = (uL, dL), ΨR = (uR, dR)

transforming as

(2,1)1/6, (1,2)1/6 (C.1)

of SU(2)L × SU(2)R ×U(1)X . For these representations, the X-charge can be identified as

X = (B −L)/2. The SM zero modes [3, 4, 26] can be reproduced by the assignment of the

following BC’s:

ΨL UV IR

χL =

(

χuL

χdL

)

+ +

ψL =

(

ψuL

ψdL

)

− −

ΨR UV IR

χR =

(

χuR

χdR

)

− −

ψR =

(

ψuR

ψdR

)

+ +

(C.2)

where + stands for a Neumann BC, − stands for a Dirichlet BC, χ represents the LH

chirality, and ψ the RH chirality. To give the fermions a mass, a bulk Yukawa coupling

can be written. After replacing the Higgs with its VEV the mass term has the form

λ√
2
v(z) (χLψR + χRψL) + h.c. (C.3)
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. Note that in order to preserve custodial symmetry, the Yukawa coupling (C.3) couples to

both up and down type quarks. To split their mass, a large kinetic term can be added on

the UV brane for ψdR
, since SU(2)R is broken on that brane.

For the third generation, things are more problematic due to the large top mass. In

order to generate the top mass, one needs to localize it closer to the IR brane, where the

Higgs lives. However this turns out to generate large corrections to the Zb`b̄` coupling. To

solve this problem, one has to use a different set of representations for the third generation,

as proposed by [14]. The LH doublet is now embedded in a bidoublet of SU(2)L × SU(2)R,

the RH top in a singlet, and the RH bottom in a triplet of SU(2)R:

ΨL = (2,2)2/3 =

(

tL XL

bL TL

)

, ΨR = (1,3)2/3 =







XR

TR

bR






, tR = (1,1)2/3, (C.4)

where all these fermion fields are bulk fields. As usual, Y = T 3
R + X, Q = T 3

L + Y ,

and the BC’s ensure that the only zero modes correspond to SM fields. There are two

SU(2)L×SU(2)R×U(1) invariant Yukawa couplings that one can write in the bulk. After

plugging in the VEV for the bidoublet Higgs field these will lead to the bulk mass terms

for the fermions

LY = λ3
v(z)√

2

[

1√
2
TR (tL + TL) + bRbL + XRXL

]

+
λ1v(z)

2
tR (tL − TL) + h.c. (C.5)

Under the unbroken SU(2)D subgroup, the combination (tL − TL)/
√

2 is the singlet com-

ponent of ΨL, while the fields (XL, (tL + TL)/
√

2, bL) form the triplet. Choosing ΨL and

tR to be localized close to the IR brane, the top mass can easily obtained. In order to

avoid large deviations to the Zb`b̄`, one has also to localize ΨR close to the UV brane [9].

Changing V and β changes the allowed parameter space, which becomes larger for larger

values of 1/R′.
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